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IV. Appendix: 
Automated  
Multimedia 
Content Analysis 
Techniques 

Matching Models - Cryptographic  
Hashing 

Cryptographic hashing functions create a string of numbers and 
letters called a hash, which almost uniquely identifies a file. Similar 
cryptographic functions are also used to encrypt data in applications 
like e-mail, Signal or WhatsApp texts, or certain file storage mediums, 
and are meant to assure recipients of the authenticity of a message or 
file, down to the last bit. Cryptographic hashing uses a cryptographic 
function to generate a random hash fingerprint. The cryptographic 
component makes these functions generally “non-smooth” and 
extremely sensitive to change. This means even miniscule alterations in 
the input data will drastically change the resulting hash. For example, 
changing the shade of one pixel in a high-resolution photo would 
produce a distinct cryptographic hash. Cryptographic functions are 
also highly collision-resistant, meaning different pieces of content will 
produce very different hashes so the likelihood of two different pieces 
of content producing the same hash (or “colliding”) are incredibly low 
(Engstrom & Feamster, 2017). 
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Original cat image 

MD5 checksum 
One way 
MD5 hash F22D5311A0026526F6B823B93B62CBDD 
generator 

Completely diferent 
resulting hashes 

Modified with blue eyes 

MD5 checksum 
One way 
MD5 hash CF29F92A0E49396AF3D7AABF3D357018 
generator 

Figure 8. An example of how small 
changes in input data can lead to very 
different results in cryptographic hashing. 
This graphic has been recreated, and based 
on one by Rosenbaum, K. (2017, June 
26). Cryptographic Hashes and Bitcoin, 
Grokking Bitcoin, Manning Publications. 
Retrieved December 17, 2020 from 
https://freecontent.manning.com/ 
cryptographic-hashes-and-bitcoin/. 

https://freecontent.manning.com/cryptographic-hashes-and-bitcoin/
https://freecontent.manning.com/cryptographic-hashes-and-bitcoin/
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Cryptographic hashing is highly effective in authenticating known content without 
alterations. This leads to its primary drawback in its use for automated content 
analysis, which is its lack of robustness, meaning it is not resistant to minor data 
distortion. Substantially identical pieces of content may hash very differently. This is 
particularly problematic in use cases that are adversarial in nature—i.e. an attacker tries 
to circumvent a hash-based filter and modifies content such that it produces a different 
hash. Alterations might also occur naturally, simply through the routine transfer of data 
which may utilize compression to save bandwidth and space. Most modern content 
sharing systems apply some form of post-processing which would, by nature, change 
the bits of the file and thus the output of the cryptographic hash. Ideally, a matching 
system would be input invariant, which means that small alterations in input would 
produce little or no change in the hash. 
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Matching Models - 
Perceptual Hashing 

Perceptual hashing seeks to determine not whether two pieces of content are identical, 
but whether they are “alike enough”—i.e. practically identical. For example, if you 
were shown two photos of the same person, except one single hair in one photo were a 
slightly different shade, you would likely not notice this miniscule change and consider 
the photos the same. However, a cryptographic hashing method would consider these 
completely different. The goal of a perceptual hashing method would be to recognize 
these as fundamentally the same photo. Perceptual hashing methods aim to better 
comprehend the nature of a piece of content so that the machine cannot be fooled 
by imperceptible or non-meaningful changes, such as rotations, resizing, orientation 
flips, noise, delays in audio or video, or watermarking. Some of these changes might be 
naturally occurring, or others may be human-designed efforts to circumvent detection.	

Perceptual hashing methods involve various methods of pre-processing content, 
hashing it, and using metrics to compare how alike two pieces of hashed content are. A 
threshold can be set to determine what degree of difference between hashes is allowed 
to still c
te................................  onsider them matches. Modern perceptual hashing methods apply a range of 

chniques, including different approaches to create hash fingerprints. For example, 
by applying a grid and analyzing relationships among pixels in each square, the hash 
comparison is able to recognize the underlying similarity of the images (see Fig 9).	

Some of those methods include  

ones based on invariant features, 

local feature points, dimension 

reduction, and statistics features. 

(Du et al., 2020). 
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Figure 9. An overview of a hash comparison process of two versions of the same photo but with different levels of color saturation. Source: Souza et al. 
(2018). https://www.researchgate.net/profile/Veronica-Teichrieb/publication/325521472_Generating_an_Album_with_the_Best_Media_Using_	
Computer_Vision/links/5b2179a6458515270fc6da3e/Generating-an-Album-with-the-Best-Media-Using-Computer-Vision.pdf. 

https://www.researchgate.net/profile/Veronica-Teichrieb/publication/325521472_Generating_an_Album_with_the_Best_Media_Using_Computer_Vision/links/5b2179a6458515270fc6da3e/Generating-an-Album-with-the-Best-Media-Using-Computer-Vision.pdf
https://www.researchgate.net/profile/Veronica-Teichrieb/publication/325521472_Generating_an_Album_with_the_Best_Media_Using_Computer_Vision/links/5b2179a6458515270fc6da3e/Generating-an-Album-with-the-Best-Media-Using-Computer-Vision.pdf
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Perceptual hashing methods offer more flexibility than their cryptographic 
counterparts. For instance, they can be capable of identifying content that is hidden 
within other pieces of content, such as a video that is masked within another video 
(Langston, 2018). In order to evolve as attackers evolve, perceptual hashing functions 
may utilize techniques like deep learning and convolutional neural networks (discussed 
in more detail in Box 1) in order to adaptively identify manipulation methods and 
features. Such methods have shown promise, with the ability to distinguish between 
substantively distinct images, while also not being fooled by superficial changes (Jiang 
& Pang, 2018). Some specific implementations of perceptual hash algorithms include 
systems designed to detect child sexual abuse material (CSAM), terrorist propoganda, 
and copyrighted content. 

CHILD SEXUAL ABUSE MATERIAL (CSAM) 

Perceptual hashing has been the primary technology utilized to mitigate the spread 
of CSAM, since the same materials are often repeatedly shared, and databases of 
offending content are maintained by institutions like the National Center for Missing 
and Exploited Children (NCMEC) and its international analogue, the International 
Centre for Missing & Exploited Children (ICMEC) (Lee et al., 2020). PhotoDNA, 
developed by Microsoft, is presently the most widespread perceptual matching method 
for countering CSAM. At a high level, it works by first converting a full-resolution 
color image to grayscale, then downsizing it to 400 x 400 pixels. A filter is applied, the 
image is partitioned, and then measurements are extracted onto feature vectors which 
are compared using a distance metric. PhotoDNA for video applies a similar method 
to certain video “key frames” (Langston, 2018). More specific information about the 
PhotoDNA algorithm and the NCMEC database are not publicly available, due to 
concerns that attackers would use that information to circumvent these protections; 
however, this lack of transparency also closes off avenues for independent audits and 
review.	

Facebook has open-sourced its PDQ and TMK+PDQF algorithms for image- and 
video-matching, respectively (Davis & Rosen, 2019). PDQ, based on an algorithm 
called pHash, stores and compares the outputs of 16 x 16 transformations of images. 
Other perceptual applications in CSAM include CSAI Match, a proprietary hash-
matching technology developed by YouTube, which is utilized by Adobe, Tumblr, 
and Reddit. Google released an open-source Content Safety API, an AI-powered 
tool grading the severity of disturbing images, with the Internet Watch Foundation 
(Todorovic & Chaudhuri, 2018). New methods propose purely metadata-based 
analysis (meaning they work without examining the actual content of a file) using file 
paths, which could augment perceptual hashing methods in the fight against CSAM 
(Pereira et al., 2020). In practice, companies may use a combination of these and other 
automated tools to detect CSAM on their networks.	

See for example the tools used 

by Pornhub to detect CSAM 

and non-consensual content. 

https://help.pornhub.com/hc/ 

en-us/articles/1260803955549-

Transparency-Report/. Accessed 

April 2021. 

https://help.pornhub.com/hc/en-us/articles/1260803955549-Transparency-Report/
https://help.pornhub.com/hc/en-us/articles/1260803955549-Transparency-Report/
https://help.pornhub.com/hc/en-us/articles/1260803955549-Transparency-Report/
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TERRORIST PROPAGANDA 

The Global Internet Forum to Counter Terrorism (GIFCT), a consortium founded 
by Facebook, Microsoft, Twitter, and YouTube and now operating as an independent 
entity, maintains a shared industry hash database of what they view as terrorist and 
violent extremist content. Individual companies that are members of the consortium 
may, depending on the nature of their participation, contribute content they deem 
to include terrorist propaganda to be catalogued in the shared database. This shared 
database is not available for independent review or audit.	

eGLYPH is another hashing algorithm for terrorist content created by Hany Farid, 
the same researcher who developed the original PhotoDNA technology. eGLYPH 
operates very similarly to PhotoDNA, involving the grayscale conversion of images 
and down-sizing to 400 x 400 fixed resolution. The algorithm can be used to find 
videos as well, by filtering out redundant frames to reduce length and file size, and then 
producing arbitrary-length hashes which can be compared using a “longest common 
substring.” Longest common substring is a technique for comparing how similar two 
alphanumeric strings are by finding the longest contiguous stretch the two strings 
have in common. For example, consider the random strings “982tiu3hhuiuh” and 
“293rr928iu3hhu2tiu.” These strings have the common substrings “982,” “2tiu,” and 
“iu3hhu.” Because “iu3hhu” is the longest of these substrings at six characters long, 
that is the strongest point of similarity and thus the string used to score the strength of 
similarity between the two longer strings. This approach can also be used to compare 
audio files (Counter Extremism Project, 2018; Greenemeier, 2017). 

COPYRIGHTED CONTENT 

Copyright-enforcement tools seek to match user-uploaded content to instances of 
known, copyrighted content. Perceptual methods are often useful in these efforts, since 
pirated content might add modifications or watermarks to avoid identification. An 
example of one tool is the Echoprint API, an open-source fingerprinting library utilized 
by Echo Nest, a subsidiary of Spotify (Ellis & Whitman, 2013). Echoprint contains 
three components: 1) a code/fingerprint generator; 2) a query server that stores codes to 
match against; and 3) codes themselves that are used to match against the fingerprints 
of any given audio files. Specifically, Echoprint creates time/hash pairs based on relative 
timing between beat-like onsets, and identifies pieces of audio via these pairs. The 
fingerprint is based on the relative locations of these onsets (Welcome to Echoprint, n.d.). 

Joining the consortium involves 

signing an NDA, MOU, and 

obtaining licenses to use hashing 

techniques. As a result, the 

technical workings of the SIHD are 

not publicly known. See https:// 

gifct.org/. Accessed March 2021. 

https://gifct.org/
https://gifct.org/
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Another example of a similar fingerprinting technology is YouTube’s Content ID, 
which allows rights holders themselves to create fingerprints of their multimedia 
(Engstrom & Feamster, 2017). The company Audible Magic produces matching 
systems utilized by major entertainment studios (Universal Music Group, Warner 
Bros., Sony, and Disney), as well as platforms such as Facebook, Soundcloud, Twitch, 
and Tumblr. Audible Magic holds numerous patents in perceptual fingerprinting 
and automated content recognition, including methods for creating unique audio 
signatures via segmentation. While its methods are proprietary, those patents indicate 
that it utilizes principles analogous to segmentation and fingerprinting of spectrograms 
(visual representations of a spectrum of frequencies in a piece of audio). 

OTHER APPLICATIONS 

Matching algorithms may appear in any case where an organization wants to 
blocklist content and flag that content when it appears. For instance, online social 
matchmaking services like OkCupid have utilized perceptual hashing algorithms to 
scan for re-uploads of banned profiles (Jablons, 2017). Facebook, too, utilizes a large-
scale matching infrastructure called SimSearchNet/SimSearchNet++ on “every image 
uploaded to Instagram and Facebook” to scan against an existing curated database of 
“misinformation,” including COVID-19 misinformation (Facebook, 2020). Amazon 
utilizes audio fingerprinting to prevent mentions of the word “Alexa” in advertisements 
from mistakenly triggering Alexa devices and resulting in negative customer experiences 
(Rodehorst, 2019).	

Content ID was originally licensed 

by YouTube in 2006 from Audible 

Magic; after Google acquired 

YouTube, it acquired a trademark 

for “Content ID,” after which 

Audible Magic sued Google over 

use of the term (Sanchez, 2017). 

For more background on the 

audio fingerprinting techniques 

mentioned here, see Haitsma & 

Kalker (2003). 
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Box 1. 
Deep Learning as the Foundation for Predictive Models 

Deep learning is an attempt to solve complex computational problems by replicating the structure of the human 
brain. The result are structures called artificial neural networks (ANNs) that can “learn” from very large 
quantities of data. The basic function of ANNs is to ascertain features from inputs. For example, an ANN may 
learn what features of an image represent a flower, by analyzing millions of images of flowers and non-flowers. 
ANNs contain layers of functions (called “nodes” or “neurons”) which perform various operations on the data 
that they are fed. The “deep” of deep learning refers to a network having many, many layers, most of which are 
hidden. ANNs are an umbrella and can contain many different types of neural networks.	

Think of ANNs (very roughly) like an incredibly large imaginary car factory, larger than any currently on earth, 
where upwards of millions of workers process smaller components of a very complex car. Assembly of the finished 
project will typically be broken down into a multitude of sub-tasks. Teams of workers with specialized skills build 
upon the output of other workers within dedicated teams and may connect with other teams as needed. The 
outputs of these steps may not, by themselves, look anything like the finished product, much as an ignition coil 
may not be immediately recognizable as a car part (even to regular users of cars). During the process, tasks and 
workflow may also be shifted in real-time to make the process more efficient. Thus, someone walking through this 
factory would likely find it impossible to grasp the immensity of the process or the relationships between various 
teams and processes. 

ANNs can be structured in a variety of ways. One type of ANN, a fully-connected neural network, is good at 
making classification decisions of simple data. This means each node in a layer is connected to all the nodes in the 
next layer. However, fully-connected networks suffer from computational inefficiency because they are dense. If the 
first layer contained 1,000 nodes, this would lead to 1 billion parameters after just the first layer, which will increase 
dramatically with dozens or hundreds of layers, or if color channels are added to the image being evaluated, for 
example (Elgendy, 2020). This huge number of parameters leads to high computing time, unwieldiness, and 
overfitting, making ANNs alone ill-suited for computer vision and audition tasks. Another type of neural network, 
called a convolutional neural network (CNN), seeks to address this issue.	

CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks (CNNs) underlie the current most popular method for modern predictive 
models for content analysis. They utilize locally connected layers to attempt to simplify inputs to smaller 
representations before making classification decisions. Instead of each node being connected to every node in the 
previous layer and considering the entire input, nodes in a CNN consider smaller windows of the input. CNNs 
utilize convolutional layers, which act like windows (or “kernels”) sliding over the input data to extract salient 
features by applying various filters. These filters perform specialized operations such as edge, contour, or corner 
detection for images (these operations reduce spatial dimension and resolution of the image). Then a pooling 
operation is performed where the results of the high-level features are combined. Like ANNs, CNNs have input 
layers, output layers, and hidden layers. Predictive models that utilize CNNs often incorporate fully-connected 
layers or recurrent layers for stages of their analysis. 

Do You See What I See? Capabilities and Limits of Automated Multimedia Content Analysis 
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Here’s a walkthrough of a CNN process. Suppose a CNN is used to try to identify 
that an input image contains a flower. First, CNN layers will apply filters across the 
image to create a feature map. This means the first layers will extract very rudimentary 
features like edges and blobs. As these features are combined, an early layer may result 
in recognizing a rough outline of a flower. Another layer of features may identify a 
petal, stem, or leaf by their outlines, colors, and textures. Pooling layers simplify the 
outputs of these various feature maps. They are then “flattened” onto a long vector 
which expresses the data in a simplified format. These simplified outputs then can be 
analyzed by fully-connected layers (thus the more computationally expensive part of 
the calculation is now being done on a much smaller, less expensive, input) which will 
generate a prediction whether the image contains a flower. This prediction is based on 
the data and the model’s training on images containing flowers.	

CDT Research 
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 Figure 10. This graphic has been recreated, 
and based on an illustration of a CNN 
by MathWorks. Source: Learn About 
Convolutional Neural Networks. (2020). 
MathWorks. Retrieved December 17, 
2020 from https://www.mathworks.com/	
help/deeplearning/ug/introduction-to-
convolutional-neural-networks.html. 

https://www.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html
https://www.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html
https://www.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html
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Predictive Models -  
Computer Vision 
Models for Content 
Analysis 

Computer vision attempts to solve a multitude of sub-problems, using techniques 
such as deep-learning models and CNNs. Vision problems involve a complex suite of 
“building block” tasks from analyzing shapes, textures, colors, spatial arrangement, and 
static and temporal relationships. Computer vision technology is rapidly evolving with 
the potential to be "the greatest disruptive innovation in a generation" (McBride, 2020). 
Examples of various computer vision tasks are summarized below, although this list is 
non-exhaustive: 

Computer Vision Task Function Sample Output 

Classification	 Identifies what is in an image, without Image contains at least one person, a hate 
determining object location in the image. symbol, and a sign, with a particular degree of 

confidence.	

Object Detection	 Identifies the classification and locations of A box-shaped region in an image contains a 
objects in an image via bounding boxes. person, another box-region contains another 

person, another box contains a sign, and 
another box contains a hate symbol. 

Semantic Segmentation	 Identifies, at a pixel-level outline, what space The parts of the image that are perceived as 
in the image belongs to what categories of people are shaded one color, parts of the image 
objects. that are signs are another color, and the hate 

symbol is another. 

Instance Segmentation	 Identifies objects using a pixel-level outline, The individual people, sign, and symbol are 
differentiating distinct copies of the same different colors.	
object. 

Scene Understanding	 Identifies what is generally happening in a The scene depicts a person protesting with a 
scene using geometric and content cues. sign containing a hate symbol. 

Action Recognition	 Identifies, using physical cues, what actions The person is holding the sign. The person is 
are being taken. yelling. 

Object Tracking	 Identifies, in a video, where an object moves The person is swinging the sign back and forth.	
over time. 

3D Pose Estimation	 Identifies, using joint positions, what physical The person holding the sign is making offensive 
action a person is taking. gestures. 

Table 2. Examples of various computer 
vision tasks summarized.	

IMAGE CLASSIFICATION (IMAGE LEVEL PREDICTIONS) 

A classifier is a computer vision algorithm that indicates what an image contains. 
Image classifiers are one of the simpler computer vision tools, and they are ubiquitous 
and among the most common in the multimedia content analysis space (Batra, 2019). 
A current popular classifier is called ResNet-50, which is a CNN that contains fifty 
layers, is pre-trained on a million images from the ImageNet database, and can classify 
according to 1000 object categories. 
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Classification indicates what predefined categories of objects occur in data. A very basic 
example of a classifier would be one that predicts whether or not an image contains a cat 
or dog. “Prediction” is a term of art used since outputs are typically accompanied by a 
confidence score, which indicates the degree of certainty with which the algorithm has 
made its prediction (one can also think of it as a “guess”). 

Classifiers can achieve state-of-the-art performance across many domains. But they 
are brittle, meaning they are susceptible to external forms of visual interference and 
distortions called perturbations (Stock et al., 2020). Perturbations might include 
anything from changes to the intensity of single pixels in an image, to image-wide 
changes such as noise or blur. These perturbations may be environmental, a product of 
imperfect image capture techniques, or the result of deliberate efforts to fool an image 
recognition process. 

Figure 11. Illustration of image 
perturbations. Source: (Hendrycks & 
Dietterich, 2019).	

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted  Glass 

Motion Blur Zoom Blur Snow Frost Fog 

Brightness Contrast Elastic Pixelate JPEG 
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Figure 1. Visually similar images: 
chihuahuas and blueberry muffins, 
or sheepdogs and mops. Source: 
https://twitter.com/teenybiscuit/	
status/707670947830968320 (Accessed 
March 2021). 

Classifiers may also be fooled by images that look very similar to one another but 
represent different objects, such as chihuahuas and blueberry muffins, or sheepdogs and 
mops (per our previous example in Figure 1). 

OBJECT DETECTION (OBJECT/BOUNDING BOX LEVEL PREDICTIONS) 

While classifiers merely identify what is in an image, object detectors take on a more 
complex task, which is localizing one or more objects in an image and classifying those 
objects. Many industry content analysis tools utilize object detectors. For instance, 
the Amazon Rekognition Content Moderation API, for images and videos, is a deep-
learning based detector. It assigns labels to objects in photos including adult content, 
violence, weapons, visually disturbing content, as well as drugs, alcohol, tobacco, hate 
symbols, and gestures, all with associated confidence scores (Amazon Web Services, 
2020). Google Cloud’s Vision API similarly utilizes detectors to identify explicit 
content and various objects and expressions. Specialized detectors may be used in 
content analysis, from gunshot detectors, to blood detectors and others. 

https://twitter.com/teenybiscuit/status/707670947830968320
https://twitter.com/teenybiscuit/status/707670947830968320
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The output of a detector is typically a location, denoted by a “bounding box,” and the 
class of the object. An object detection algorithm generally begins by proposing regions 
of interest (ROIs) and then conducting classification tasks, as discussed earlier, on those
individual regions. Since several ROIs might initially cover an object, a process called 
“non-maximum suppression” is utilized to narrow down which ROI most closely 
frames a given object. 

 

Classification Object detection 

CAT CAT, DOG, DOG 

Figure 12. Sample outputs of image 
classifiers versus detectors. This graphic has 
been recreated, and based on an illustration 
by Hulstaert, L. (2018, April 19). A 
Beginner’s Guide to Object Detection, 
Datacamp. Retrieved December 17, 
2020 from https://www.datacamp.com/	
community/tutorials/object-detection-
guide. 

Figure 13. Examples of a proposal process 
for regions of interest (ROIs). The light 
green boxes would be the output ROIs 
because, of all the boxes, they contain the 
most of a given dog. This graphic has been 
recreated, and based on an illustration 
by Chanel, V.S. (2017, September 18). 
Selective Search for Object Detection 
(C++/Python), Learn OpenCV. Retrieved 
from https://www.learnopencv.com/	
selective-search-for-object-detection-cpp-
python/. 

https://www.datacamp.com/community/tutorials/object-detection-guide
https://www.datacamp.com/community/tutorials/object-detection-guide
https://www.datacamp.com/community/tutorials/object-detection-guide
https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
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For content analysis, detectors may be desirable when the location in an image is 
relevant for determining its nature. For example, state-of-the-art detectors are being 
trained to recognize natural disasters such as earthquakes and flash floods, or other 
emergencies like accidents. These detectors could be used on social media to learn 
correlations between these events and posting metrics to better respond to emergencies 
(Weber et al., 2020). Object detection is crucial in analysis of video, which relies on 
understanding location and movement over time. 

Two main evaluation metrics are used to measure the performance of object detectors. 
Detection speed is evaluated in frames per second (FPS), and network precision is 
measured via mean average precision (mAP) (Elgendy, 2020). Research shows that 
detectors generally perform better against efforts to circumvent them than classifiers — 
“fooling a detector is a very different business from fooling a classifier” (Lu et al., 2017, 
p. 9). This is because detectors consider a multitude of ROIs around an image, and 
apply a classification algorithm to each of these. Any circumvention effort must fool all 
of these boxes, rather than simply one. Importantly, detectors can come in many forms, 
and often feature trade-offs depending on the desire for speed or accuracy. 

Three of the most popular algorithms for object detection are called R-CNN, SSD 
(Single Shot Detector), and YOLO (You Only Look Once). R-CNN is the least 
sophisticated of the three. It first uses a selective search algorithm to identify the most 
likely regions where the object exists, runs each proposed region separately through 
the CNN to compute its features, and then uses a classifier to determine what the 
object is. These steps partly explain why the use of R-CNN architectures is slow and 
computationally expensive. For this reason they are called multi-stage detectors. SSD 
and YOLO attempt to address the multi-stage issue by being “one shot”—in other 
words, convolutional layers simultaneously predict whether ROIs contain an object 
while also conducting the classification step. These detectors are considerably faster, 
and thus are often used in real-time video or camera applications (Redmon & Farhadi, 
2018). However, they tend to be more prone to mistakes than multi-stage detectors. 

Improvements to R-CNN include  

removing the need for analysing 

separate region proposals (Fast 

R-CNN) and the use of the  

selective search algorithm (Faster 

R-CNN), both of which made  

computation slower (See Girshick, 

2015 and ; S. Ren et al., 2016). 

Semantic Segmentation Classification + Localization Object Detection Instance Segmentation 

GRASS, CAT, TREE, SKY CAT DOG, DOG, CAT DOG, DOG, CAT 

No objects, just pixels Single Object Multiple Object 

Figure 2. Differences between computer 
vision tasks. Note that for instance 
segmentation, the two adjacent dogs are 
differentiated. In semantic segmentation, 
these would be the same color and not 
differentiated. Source: http://cs231n. 
stanford.edu/slides/2017/cs231n_2017_
lecture11.pdf#page=53 (Accessed May 
2021). 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf#page=53
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf#page=53
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf#page=53
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SEMANTIC SEGMENTATION AND INSTANCE SEGMENTATION 

Segmentation tasks are important for content analysis because they are the building 
blocks for parsing relationships between objects in images or video. Semantic	
segmentation seeks to be more granular than detection, by assigning a class label 
to each individual pixel in an image. Instance segmentation seeks to be even more 
precise and identify individual object boundaries. A popular technique for this is 
called Mask R-CNN, which is an extension of Faster R-CNN for object detection. It 
works by generating bounding boxes and then adding a step to produce “masks” or 
object outlines (Mittal, 2019). Video instance segmentation takes this further, where 
individually segmented instances are then linked and tracked over an entire sequence. 
For instance, researchers at Facebook developed an approach to instance segmentation 
to track objects in video sequences using a method called MaskProp. Other state-of-
the-art methods in panoptic segmentation seek to merge both semantic and instance 
segmentation into one task (Kirillov et al., 2019).	

SCENE UNDERSTANDING 

Scene understanding seeks to comprehend a scene by considering the geometric 
and semantic relationships of its contents (Naseer et al., 2019). Scene understanding 
algorithms have important applications in content analysis, as they piece together 
the larger correlations between individual objects. For example, an image containing 
“fire” might be a campfire or it could be a natural disaster or violent scene. An image 
containing “blood” might be a gruesome image, or it may be an educational photo of 
a surgery. Researchers from UCLA utilized scene understanding and visual sentiment 
analysis to develop a visual model to recognize protesters, describe their activities, and 
estimate the level of perceived violence in the image (Won et al., 2017). They identified 
that emotions such as anger and fear were often correlated with perceived violence, 
and implemented object detection of labels such as signs, photos, fire, law enforcement, 
children, and flags. 

Scene understanding is a compound task that involves a number of the aforementioned 
“building block” tasks. Hence a scene understanding algorithm is not simply one 
algorithm but involves the application of a number of CNNs: classification; object 
detection; segmentation; monocular depth estimation; pose estimation; and / or 
sentiment analysis, among others. 

The simplest architecture for 

semantic segmentation is the 

Fully-Convolutional Net (FCN), an 

encoder-decoder process. In FCN, 

an input image is down-sampled 

to a smaller size through a series 

of convolutions (the encoder), 

and then that encoded output is 

up-sampled. Up-sampling can 

occur via processes such as 

bilinear interpolation or transpose-

convolutions (Long et al., 2015). 

The encoding process may, 

however, lead to artifacts and poor 

boundary resolution. More modern 

architectures include multi-scale 

models like the Pyramid Scene 

Parsing Network (PSPNet), which 

performs multiple convolution 

operations of varying dimensions 

(hence the “pyramid” title) (Zhao 

et al., 2017). 

The MaskProp technique predicts 

clip-level instances in order to 

simultaneously classify, segment, 

and track object instances in 

video sequences. It is billed as 

more robust against motion blur 

and object occlusions in videos 

(Bertasius & Torresani, 2020). 
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OBJECT TRACKING 

The task of object tracking in either pre-recorded video or a live stream means 
following the location of a given object over time. To imagine the difficulty of this, 
picture being with a friend in a busy crowd. Consider the steps the brain must take to 
watch a friend moving through the crowd and not lose sight of them. This involves 
identifying individual humans in the crowd, recognizing the friend among the other 
humans, and differentiating the friend (or perhaps only one or more features or 
perspectives of the friend due to obscuration). At some moments the friend may be 
close or far (Asad et al., 2020). Multiple objects, lighting discrepancies, or temporary 
disappearances from view are just some of the problems tracking algorithms may face 
(Nixon & Aguado, 2019).  

Video understanding is a significantly more difficult task than identification of objects 
in static images because it involves a temporal dimension. This dimension creates 
dependencies between various points in time (i.e., the order matters). An example 
of this is the act of climbing up a ladder, which can appear to be climbing down if 
an algorithm gets the frame-order wrong. Examples of tasks that may need to occur 
in video are object tracking, video object segmentation, video prediction, and pose 
estimation. Many current video analysis tools will approximate videos using specific 
frames. The Microsoft Azure content moderation system, for instance, divides content 
into differing “shots” and identifies specific key frames on which to run a static image 
analysis on whether that image is inappropriate or prohibited content.	

Object tracking is utilized for a variety of use cases, such as following the motion of 
humans or vehicles. One key representation benefitting tracking and motion estimation 
is optical flow, or the pixel-level correspondence between images. These can help 
ascertain and differentiate forms of movement.	

Traditionally, classical methods infer 

optical flow by minimizing what 

is called a “loss function.” Modern 

methods utilize unsupervised 

learning to circumvent the need 

for labels. These approaches 

are advantageous because they 

yield faster results and improved 

performance. Examples of these 

approaches include OAFlow and 

DDFlow (Jonschkowski et al., 2020). 

ACTION RECOGNITION AND 3D POSE ESTIMATION 

Advances in action recognition are a current priority in computer vision, given the 
volume of video content being produced on devices and platforms. Many action 
recognition algorithms are highly specialized. Tools may only consider specific subjects 
at a time. For example, state-of-the-art models in violence recognition propose to 
break down violence into categories such as blood, explosions, fights, fire, and firearms 
(Peixoto et al., 2019). 3D pose estimation involves predicting the 3D position of 
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human joints in images. Most reliable data is obtained using elaborate sensors and 
bodysuits which is impractical for collecting volumes of data and, importantly, does 
not exist for data obtained “in the wild” (Pavllo et al., 2019). In light of that, current 
research focuses on estimation of 3D keypoints from 2D images, historically using 
estimations to reference the pelvis joint. Pose estimation allows for better action 
recognition, as well as enabling research into human gestures. Audio cues can be 
combined with gestures to analyze and predict gestures from speech (Ginosar et al., 
2019). 

ISSUES WITH LIVE VIDEO 

Live video presents some of the most challenging problems to content analysis. It 
requires the application of all of the aforementioned prediction tasks. Not only must 
the outputs of those tasks be synthesized, but the live component requires them to be 
done quickly. This is enormously computationally expensive, because videos (especially 
high resolution ones) are large data files, and hence generally impractical to monitor for 
social media platforms. Use cases of screening live video for violence, for example, may 
thus still be far off. Facebook executives, for example, reportedly said that AI may still 
be years away from being able to moderate live video at scale (Kahn, 2019).	
However, current technologies do apply forms of live object detection. Self-driving cars 
must understand objects in real time (Chin et al., 2019). Even so, these technologies 
are typically applying detection of objects, which is a much simpler task than parsing 
context about whether a scene contains violence.	
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Predictive Models - 
Computer Audition 
Models for Content 
Analysis 

Computer audition seeks to understand audio content. Where audio involves humans 
speaking, speech will often first be transcribed to a text form and analyzed with natural 
language processing (NLP) methods. This may compound errors that are misheard 
(such as if “porn” is misheard as “born,” potentially changing an analyzed context). 
Google’s “AI Autobahn” combines its Natural Language API and Jigsaw’s Perspective 
APIs to first do speech-to-text analysis, then apply textual sentiment and toxicity 
analysis. NLP methods and their strengths and limitations are covered in detail in 
CDT’s previous Mixed Messages report (Duarte et al., 2017). 

Deep learning applications for computer audition mirror many of the use cases in 
computer vision. However, they are typically conducted on spectrograms (graphic 
frequency depictions) of audio, rather than on images. State-of-the-art image 
classification techniques are also capable of achieving positive results on audio 
classification tasks (Hershey et al., 2017).  Tasks of audio classification are often 
analogous to their image counterparts. Scene recognition, for example, has an audio 
counterpart (computational auditory scene recognition, or CASR) (Petetin et al., 
2015). The foundational “cats and dogs” image classification task even has an audio 
counterpart for barks and meows (Takahashi et al., 2016).	

Some unique challenges presented in computer audition include mitigating noise, 
data variations, and language biases. Isolating salient audio from noise is the subject 
of current research, which is attempting to isolate sources of audio in mixed-audio 
recordings (Gfeller et al., 2020). Sound samples themselves may be inconsistent, 
with varied loudness, sample quality, and time durations (Saska et al., 2019). Some 
algorithms exist for noise reduction, including spectral noise gating, which aims to 
eliminate consistent background noise by “gating” out any noise that falls in a certain 
frequency range. This can help eliminate certain types of consistent background noise, 
like eliminating the frequencies of a coffee grinder from a recording of ambient sounds 
in a coffee shop. This could be useful, for example, in a tool that is trying to identify 
the song playing over the coffee shop’s loudspeakers. But gating out the coffee-grinder 
frequencies could also affect, for example, the ability of a matching algorithm to 
identify a song that uses those same frequencies. 

Finally, automatic speech recognition (ASR) is challenged by the fact speech can 
occur in many different languages, accents, or dialects. Different recognition models 
may be trained on “high resource languages” (languages for which many data resources 
exist) versus “low resource languages” (for which there are few data resources available). 
Many near-extinct languages, dialects, or primarily oral languages have not generated 
electronic data (C. Wang et al., 2020). These considerations present challenges for the 
widespread application of computer audition tools for predictive applications.	
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